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GRAPH THEORY 

Introduction to Graphs 
 

Graph is a non linear data structure; A map is a well-known example of a graph. In a map various connections are 

made between the cities. The cities are connected via roads, railway lines and aerial network. We can assume that 

the graph is the interconnection of cities by roads. Euler used graph theory to solve Seven Bridges of Königsberg 

problem. Is there a possible way to traverse every bridge exactly once – Euler Tour 
 

 

Figure: Section of the river Pregal in Koenigsberg and Euler's graph. 
 

Defining the degree of a vertex to be the number of edges incident to it, Euler showed that there is a walk starting 

at any vertex, going through each edge exactly once and terminating at the start vertex iff the degree of each, 

vertex is even. A walk which does this is called Eulerian. There is no Eulerian walk for the Koenigsberg bridge 

problem as all four vertices are of odd degree. 

A graph contains a set of points known as nodes (or vertices) and set of links known as edges (or Arcs) which 

connects the vertices. 

A graph is defined as Graph is a collection of vertices and arcs which connects vertices in the graph. A graph G is 

represented as G = ( V , E ), where V is set of vertices and E is set of edges. 

Example: graph G can be defined as G = ( V , E ) Where V = {A,B,C,D,E} and 
 

E = {(A,B),(A,C)(A,D),(B,D),(C,D),(B,E),(E,D)}. This is a graph with 5 vertices and 6 edges. 

 

 
Graph Terminology 

 

1. Vertex : An individual data element of a graph is called as Vertex. Vertex is also known as node. In above 

example graph, A, B, C, D & E are known as vertices. 

2. Edge : An edge is a connecting link between two vertices. Edge is also known as Arc. An edge is represented as 

(starting Vertex, ending Vertex). 

In above graph, the link between vertices A and B is represented as (A,B). 

Edges are three types: 

1. Undirected Edge - An undirected edge is a bidirectional edge. If there is an undirected edge between vertices A 

and B then edge (A , B) is equal to edge (B , A). 

2. Directed Edge - A directed edge is a unidirectional edge. If there is a directed edge between vertices A and B 

then edge (A , B) is not equal to edge (B , A). 
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3. Weighted Edge - A weighted edge is an edge with cost on it. 
 

Types of Graphs 

1.Undirected Graph 

A graph with only undirected edges is said to be undirected graph. 
 

 

2. Directed Graph 
 

A graph with only directed edges is said to be directed graph. 
 

 
3. Complete Graph 

 

A graph in which any V node is adjacent to all other nodes present in the graph is known as a complete graph. An 

undirected graph contains the edges that are equal to edges = n(n-1)/2 where n is the number of vertices present in 

the graph. The following figure shows a complete graph. 
 

 
4. Regular Graph 

 

Regular graph is the graph in which nodes are adjacent to each other, i.e., each node is accessible from any other 

node. 

 
5. Cycle Graph 

 

A graph having cycle is called cycle graph. In this case the first and last nodes are the same. A closed simple path 

is a cycle. 
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6. Acyclic Graph 
 

A graph without cycle is called acyclic graphs. 

 
7. Weighted Graph 

 

A graph is said to be weighted if there are some non negative value assigned to each edges of the graph. The 

value is equal to the length between two vertices. Weighted graph is also called a network. 
 

 
Outgoing Edge 

 

A directed edge is said to be outgoing edge on its orign vertex. 
 

Incoming Edge 
 

A directed edge is said to be incoming edge on its destination vertex. 
 

Degree 
 

Total number of edges connected to a vertex is said to be degree of that vertex. 
 

Indegree 
 

Total number of incoming edges connected to a vertex is said to be indegree of that vertex. 
 

Outdegree 
 

Total number of outgoing edges connected to a vertex is said to be outdegree of that vertex. 
 

Parallel edges or Multiple edges 
 

If there are two undirected edges to have the same end vertices, and for two directed edges to have the same 

origin and the same destination. Such edges are called parallel edges or multiple edges. 

Self-loop 
 

An edge (undirected or directed) is a self-loop if its two endpoints coincide. 
 

Simple Graph 
 

A graph is said to be simple if there are no parallel and self-loop edges. 
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Adjacent nodes 
 

When there is an edge from one node to another then these nodes are called adjacent nodes. 

Incidence 
 

In an undirected graph the edge between v1 and v2 is incident on node v1 and v2. 

Walk 
 

A walk is defined as a finite alternating sequence of vertices and edges, beginning and ending with vertices, such 

that each edge is incident with the vertices preceding and following it. 

Closed walk 
 

A walk which is to begin and end at the same vertex is called close walk. Otherwise it is an open walk. 

 
 

If e1,e2,e3,and e4 be the edges of pair of vertices (v1,v2),(v2,v4),(v4,v3) and (v3,v1) respectively ,then v1 e1 v2 

e2 v4 e3 v3 e4 v1 be its closed walk or circuit. 

Path 
 

A open walk in which no vertex appears more than once is called a path. 

 

 

If e1 and e2 be the two edges between the pair of vertices (v1,v3) and (v1,v2) respectively, then v3 e1 v1 e2 v2 be 

its path. 

Length of a path 
 

The number of edges in a path is called the length of that path. In the following, the length of the path is 3. 
 
 

 
An open walk Graph 

 

Circuit 
 

A closed walk in which no vertex (except the initial and the final vertex) appears more than once is called a 

circuit. 

A circuit having three vertices and three edges. 
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Sub Graph 
 

A graph S is said to be a sub graph of a graph G if all the vertices and all the edges of S are in G, and each edge of 

S has the same end vertices in S as in G. A subgraph of G is a graph G’ such that V(G’)  V(G) and E(G’)  

E(G) 

 

 

 

 

 

 

 
Connected Graph 

 

A graph G is said to be connected if there is at least one path between every pair of vertices in G. Otherwise,G is 

disconnected. 

 

A connected graph G A disconnected graph G 
 

This graph is disconnected because the vertex v1 is not connected with the other vertices of the graph. 
 

Degree 
 

In an undirected graph, the number of edges connected to a node is called the degree of that node or the degree of 

a node is the number of edges incident on it. 

In the above graph, degree of vertex v1 is 1, degree of vertex v2 is 3, degree of v3 and v4 is 2 in a connected 

graph. 

Indegree 
 

The indegree of a node is the number of edges connecting to that node or in other words edges incident to it. 

 

 
In the above graph,the indegree of vertices v1, v3 is 2, indegree of vertices v2, v5 is 1 and indegree of v4 is zero. 



 

Outdegree 
 

The outdegree of a node (or vertex) is the number of edges going outside from that node or in 

other words the 
 
 

Eulerian path 

In graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that 
visits every edge exactly once (allowing for revisiting vertices). Similarly, an Eulerian 
circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex. 
They were first discussed by Leonhard Euler while solving the famous Seven Bridges 
of Königsberg problem in 1736. The problem can be stated mathematically like this: 

 
 
 
 

 
 
Multigraphs of both Königsberg Bridges and Five room puzzles have more than two 

odd vertices (in orange), thus are not Eulerian and hence the puzzles have no 

solutions. 

https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Trail_(graph_theory)
https://en.wikipedia.org/wiki/Edge_(graph_theory)
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Leonhard_Euler
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
https://en.wikipedia.org/wiki/Multigraph
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
https://en.wikipedia.org/wiki/Five_room_puzzle


 

 
 
Every vertex of this graph has an even degree. Therefore, this is an Eulerian graph. 

Following the edges in alphabetical order gives an Eulerian circuit/cycle. 

Given the graph in the image, is it possible to construct a path (or a cycle; i.e., a 

path starting and ending on the same vertex) that visits each edge exactly 

once? 

 
Euler proved that a necessary condition for the existence of Eulerian circuits is that 
all vertices in the graph have an even degree, and stated without proof that 
connected graphs with all vertices of even degree have an Eulerian circuit. The first 
complete proof of this latter claim was published posthumously in 1873 by Carl 
Hierholzer. This is known as Euler's Theorem: 

 
A connected graph has an Euler cycle if and only if every vertex has even 
degree. 

 

The term Eulerian graph has two common meanings in graph theory. One 
meaning is a graph with an Eulerian circuit, and the other is a graph with every 
vertex of even degree. These definitions coincide for connected graphs. 

 

For the existence of Eulerian trails it is necessary that zero or two vertices have an 
odd degree; this means the Königsberg graph is not Eulerian. If there are no 
vertices of odd degree, all Eulerian trails are circuits. If there are exactly two 
vertices of odd degree, all Eulerian trails start at one of them and end at the other. A 
graph that has an Eulerian trail but not an Eulerian circuit is called semi-Eulerian. 

 

Definition 

 
An Eulerian trail,or Euler walk, in an undirected graph is a walk that uses each 
edge exactly once. If such a walk exists, the graph is called traversable or semi-
eulerian.[4] 

 
An Eulerian cycle,[3] also called an Eulerian circuit or Euler tour, in an undirected 

graph is a cycle that uses each edge exactly once. If such a cycle exists, the graph 

https://en.wikipedia.org/wiki/Degree_(graph_theory)
https://en.wikipedia.org/wiki/Cycle_(graph_theory)
https://en.wikipedia.org/wiki/Degree_(graph_theory)
https://en.wikipedia.org/wiki/Carl_Hierholzer
https://en.wikipedia.org/wiki/Carl_Hierholzer
https://en.wikipedia.org/wiki/If_and_only_if
https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Eulerian_path#cite_note-4
https://en.wikipedia.org/wiki/Eulerian_path#cite_note-pathcycle-3
https://en.wikipedia.org/wiki/Cycle_(graph_theory)


 

is called Eulerian or unicursal.[5] The term "Eulerian graph" is also sometimes used 
in a weaker sense to denote a graph where every vertex has even degree. For finite 
connected graphs the two definitions are equivalent, while a possibly unconnected 
graph is Eulerian in the weaker sense if and only if each connected component has 
an Eulerian cycle. 

 
For directed graphs, "path" has to be replaced with directed path and "cycle" with 

directed cycle. 

 

The definition and properties of Eulerian trails, cycles and graphs are valid for 

multigraphs as well. 

 
An Eulerian orientation of an undirected graph G is an assignment of a direction to 

each edge of G such that, at each vertex v, the indegree of v equals the outdegree 
of v. Such an orientation exists for any undirected graph in which every vertex has 
even degree, and may be found by constructing an Euler tour in each connected 
component of G and then orienting the edges according to the tour.[6] Every Eulerian 
orientation of a connected graph is a strong orientation, an orientation that makes 
the resulting directed graph strongly connected. 

https://en.wikipedia.org/wiki/Eulerian_path#cite_note-5
https://en.wikipedia.org/wiki/Connected_graph
https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Directed_path_(graph_theory)
https://en.wikipedia.org/wiki/Directed_cycle
https://en.wikipedia.org/wiki/Directed_cycle
https://en.wikipedia.org/wiki/Multigraph
https://en.wikipedia.org/wiki/Directed_graph#Indegree_and_outdegree
https://en.wikipedia.org/wiki/Directed_graph#Indegree_and_outdegree
https://en.wikipedia.org/wiki/Eulerian_path#cite_note-6
https://en.wikipedia.org/wiki/Strong_orientation
https://en.wikipedia.org/wiki/Strong_orientation
https://en.wikipedia.org/wiki/Strongly_connected


 

Properties 
 

 An undirected graph has an Eulerian cycle if and only if every vertex has 
even degree, and all of its vertices with nonzero degree belong to a single 
connected component. 

 An undirected graph can be decomposed into edge-disjoint cycles if and 
only if all of its vertices have even degree. So, a graph has an Eulerian 
cycle if and only if it can be decomposed into edge-disjoint cycles and its 
nonzero-degree vertices belong to a single connected component. 

 An undirected graph has an Eulerian trail if and only if exactly zero or two 
vertices have odd degree, and all of its vertices with nonzero degree belong 
to a single connected component 

 A directed graph has an Eulerian cycle if and only if every vertex has equal 
in degree and out degree, and all of its vertices with nonzero degree belong 
to a single strongly connected component. Equivalently, a directed graph 
has an Eulerian cycle if and only if it can be decomposed into edge-disjoint 
directed cycles and all of its vertices with nonzero degree belong to a single 
strongly connected component. 

 A directed graph has an Eulerian trail if and only if at most one vertex has 
(out-degree) − (in- degree) = 1, at most one vertex has (in-degree) − (out-
degree) = 1, every other vertex has equal in-degree and out-degree, and all 
of its vertices with nonzero degree belong to a single connected component 
of the underlying undirected graph. 

  

https://en.wikipedia.org/wiki/Connected_component_(graph_theory)
https://en.wikipedia.org/wiki/Cycle_(graph_theory)
https://en.wikipedia.org/wiki/In_degree_(graph_theory)
https://en.wikipedia.org/wiki/Out_degree_(graph_theory)
https://en.wikipedia.org/wiki/Out_degree_(graph_theory)
https://en.wikipedia.org/wiki/Strongly_connected_component
https://en.wikipedia.org/wiki/Strongly_connected_component
https://en.wikipedia.org/wiki/Cycle_(graph_theory)
https://en.wikipedia.org/wiki/Out_degree_(graph_theory)
https://en.wikipedia.org/wiki/In_degree_(graph_theory)
https://en.wikipedia.org/wiki/In_degree_(graph_theory)


 

Hamiltonian path 

In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a 
path in an undirected or directed graph that visits each vertex exactly once. A 
Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex exactly 
once. A Hamiltonian path that starts and ends at adjacent vertices can be completed 
by adding one more edge to form a Hamiltonian cycle, and removing any edge from 
a Hamiltonian cycle produces a Hamiltonian path. Determining whether such paths 
and cycles exist in graphs (the Hamiltonian path problem and Hamiltonian cycle 
problem) are NP-complete. 

 

 
A Hamiltonian cycle around a network of six vertices 

 
Hamiltonian paths and cycles are named after William Rowan Hamilton who 
invented the icosian game, now also known as Hamilton's puzzle, which involves 
finding a Hamiltonian cycle in the edge graph of the dodecahedron. Hamilton solved 
this problem using the icosian calculus, an algebraic structure based on roots of 
unity with many similarities to the quaternions (also invented by Hamilton). This 
solution does not generalize to arbitrary graphs. 

 
Despite being named after Hamilton, Hamiltonian cycles in polyhedra had also been 
studied a year earlier by Thomas Kirkman, who, in particular, gave an example of a 
polyhedron without Hamiltonian cycles. Even earlier, Hamiltonian cycles and paths in 
the knight's graph of the chessboard, the knight's tour, had been studied in the 9th 
century in Indian mathematics by Rudrata, and around the same time in Islamic 
mathematics by al-Adli ar- Rumi. In 18th century Europe, knight's tours were 
published by Abraham de Moivre and Leonhard Euler.  

 

Definitions 

A Hamiltonian path or traceable path is a path that visits each vertex of the graph 
exactly once. A graph that contains a Hamiltonian path is called a traceable graph. 
A graph is Hamiltonian-connected if for every pair of vertices there is a Hamiltonian 
path between the two vertices. 

 
A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that 
visits each vertex exactly once. A graph that contains a Hamiltonian cycle is called a 
Hamiltonian graph. 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Path_(graph_theory)
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Cycle_(graph_theory)
https://en.wikipedia.org/wiki/Hamiltonian_path_problem
https://en.wikipedia.org/wiki/Hamiltonian_path_problem
https://en.wikipedia.org/wiki/Hamiltonian_cycle_problem
https://en.wikipedia.org/wiki/Hamiltonian_cycle_problem
https://en.wikipedia.org/wiki/NP-complete
https://en.wikipedia.org/wiki/William_Rowan_Hamilton
https://en.wikipedia.org/wiki/Icosian_game
https://en.wikipedia.org/wiki/Dodecahedron
https://en.wikipedia.org/wiki/Icosian_calculus
https://en.wikipedia.org/wiki/Icosian_calculus
https://en.wikipedia.org/wiki/Algebraic_structure
https://en.wikipedia.org/wiki/Root_of_unity
https://en.wikipedia.org/wiki/Root_of_unity
https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/Thomas_Kirkman
https://en.wikipedia.org/wiki/Hamiltonian_path#cite_note-1
https://en.wikipedia.org/wiki/Knight%27s_graph
https://en.wikipedia.org/wiki/Knight%27s_graph
https://en.wikipedia.org/wiki/Chessboard
https://en.wikipedia.org/wiki/Knight%27s_tour
https://en.wikipedia.org/wiki/Indian_mathematics
https://en.wikipedia.org/wiki/Indian_mathematics
https://en.wikipedia.org/wiki/Rudrata
https://en.wikipedia.org/wiki/Mathematics_in_medieval_Islam
https://en.wikipedia.org/wiki/Mathematics_in_medieval_Islam
https://en.wikipedia.org/wiki/Al-Adli_ar-Rumi
https://en.wikipedia.org/wiki/Al-Adli_ar-Rumi
https://en.wikipedia.org/wiki/Abraham_de_Moivre
https://en.wikipedia.org/wiki/Leonhard_Euler
https://en.wikipedia.org/wiki/Path_(graph_theory)
https://en.wikipedia.org/wiki/Cycle_(graph_theory)


 

Similar notions may be defined for directed graphs, where each edge (arc) of a path 

or cycle can only be traced in a single direction (i.e., the vertices are connected with 
arrows and the edges traced "tail-to-head"). 

 
A Hamiltonian decomposition is an edge decomposition of a graph into Hamiltonian 
circuits. 

 

A Hamilton maze is a type of logic puzzle in which the goal is to find the unique 
Hamiltonian cycle in a given graph.  

 

Examples 
 

Orthographic projections and Schlegel diagrams with Hamiltonian cycles of the 
vertices of the five platonic solids – only the octahedron has an Eulerian path or 
cycle, by extending its path with the dotted one. 

 
Examples 

 
 A complete graph with more than two vertices is Hamiltonian 

 

 Every cycle graph is Hamiltonian 
 Every tournament has an odd number of Hamiltonian paths (Rédei 1934) 
 Every platonic solid, considered as a graph, is Hamiltonian[5] 
 The Cayley graph of a finite Coxeter group is Hamiltonian (For more 

information on Hamiltonian paths in Cayley graphs, see the Lovász 
conjecture.) 

 Cayley graphs on nilpotent groups with cyclic commutator 
subgroup are Hamiltonian. 

https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Hamiltonian_decomposition
https://en.wikipedia.org/wiki/Complete_graph
https://en.wikipedia.org/wiki/Cycle_graph
https://en.wikipedia.org/wiki/Tournament_(graph_theory)
https://en.wikipedia.org/wiki/L%C3%A1szl%C3%B3_R%C3%A9dei
https://en.wikipedia.org/wiki/Platonic_solid
https://en.wikipedia.org/wiki/Hamiltonian_path#cite_note-5
https://en.wikipedia.org/wiki/Cayley_graph
https://en.wikipedia.org/wiki/Coxeter_group
https://en.wikipedia.org/wiki/Lov%C3%A1sz_conjecture
https://en.wikipedia.org/wiki/Lov%C3%A1sz_conjecture
https://en.wikipedia.org/wiki/Cayley_graph
https://en.wikipedia.org/wiki/Nilpotent_group
https://en.wikipedia.org/wiki/Commutator_subgroup
https://en.wikipedia.org/wiki/Commutator_subgroup


 

 The flip graph of a convex polygon or equivalently, the rotation graph of binary trees, is 
Hamiltonian.  

 

Properties 

Any Hamiltonian cycle can be converted to a Hamiltonian path by removing one of its edges, 
but a Hamiltonian path can be extended to Hamiltonian cycle only if its endpoints are 
adjacent. 

 
All Hamiltonian graphs are biconnected, but a biconnected graph need not be Hamiltonian 
(see, for example, the Petersen graph).  

 

An Eulerian graph G (a connected graph in which every vertex has even degree) necessarily 
has an Euler tour, a closed walk passing through each edge of G exactly once. This tour 
corresponds to a Hamiltonian cycle in the line graph L(G), so the line graph of every Eulerian 
graph is Hamiltonian. Line graphs may have other Hamiltonian cycles that do not correspond 
to Euler tours, and in particular the line graph L(G) of every Hamiltonian graph G is itself 
Hamiltonian, regardless of whether the graph G is Eulerian.[10] 

 
 
 

 

The Herschel graph is the smallest possible polyhedral graph that does not have a 
Hamiltonian cycle. A possible Hamiltonian path is shown. 

 
A tournament (with more than two vertices) is Hamiltonian if and only if it is strongly 
connected. 

 

The number of different Hamiltonian cycles in a complete undirected graph on n vertices is (n 
– 1)!/2 and in a complete directed graph on n vertices is (n – 1)!. These counts assume that 
cycles that are the same apart from their starting point are not counted separately. 

  

https://en.wikipedia.org/wiki/Flip_graph
https://en.wikipedia.org/wiki/Tree_rotation
https://en.wikipedia.org/wiki/Binary_tree
https://en.wikipedia.org/wiki/Biconnected_graph
https://en.wikipedia.org/wiki/Petersen_graph
https://en.wikipedia.org/wiki/Eulerian_graph
https://en.wikipedia.org/wiki/Connected_graph
https://en.wikipedia.org/wiki/Line_graph
https://en.wikipedia.org/wiki/Hamiltonian_path#cite_note-10
https://en.wikipedia.org/wiki/Herschel_graph
https://en.wikipedia.org/wiki/Polyhedral_graph
https://en.wikipedia.org/wiki/Tournament_(graph_theory)
https://en.wikipedia.org/wiki/Strongly_connected_component
https://en.wikipedia.org/wiki/Strongly_connected_component


 

TREE 

 
The tree is a nonlinear hierarchical data structure and comprises a collection of entities known as 

nodes. It connects each node in the tree data structure using "edges”, both directed and 

undirected. 

 

 
 

Tree Terminologies 

 
Root 

 
 In a tree data structure, the root is the first node of the tree. The root node is the initial node of the 

tree in data structures. 

 In the tree data structure, there must be only one root node. 

https://www.simplilearn.com/the-power-of-decision-trees-in-machine-learning-article


 

 

 

 
 

 

 

 

 

 

 

Edge 

 
 In a tree in data structures, the connecting link of any two nodes is called the edge of the tree data 

structure. 

 In the tree data structure, N number of nodes connecting with N -1 number of edges. 



 

 

 

 

 
 

 
 

 

 

 

 
 

 
 

Parent 

 
In the tree in data structures, the node that is the predecessor of any node is known as a parent 

node, or a node with a branch from itself to any other successive node is called the parent node. 



 

 

 

 

 

 
 

 

 

 

 

 

 

Child 

 
 The node, a descendant of any node, is known as child nodes in data 

structures. 

 In a tree, any number of parent nodes can have any number of child 
nodes. 

 In a tree, every node except the root node is a child node. 



 

 

 
 

 
 

 

 

 

 

 

 

Siblings 

 

In trees in the data structure, nodes that belong to the same parent are called siblings. 



 

 

 
 

 
 

 

 

 

 

 

 

Leaf 

 
 

 Trees in the data structure, the node with no child, is known as a leaf 
node. 

 In trees, leaf nodes are also called external nodes or terminal nodes. 



 

 

 

 
 

 
 

 

 
 

 

 

 

Internal nodes 

 

 Trees in the data structure have at least one child node known as internal 
nodes. 

 In trees, nodes other than leaf nodes are internal nodes. 

 Sometimes root nodes are also called internal nodes if the tree has more 
than one node. 



 

 

 

 

 
 

 

 

 

 
 

 

Degree 

 

  In the tree data structure, the total number of children of a node is called 
the degree of the node. 

 The highest degree of the node among all the nodes in a tree is called 
the Degree of Tree. 



 

 

 

 

 
 

 

 

 

 

 

 

Level 

 
 

In tree data structures, the root node is said to be at level 0, and the root node's children are at 

level 1, and the children of that node at level 1 will be level 2, and so on. 



 

 

 

 

 
 

 
 

 
 

 

 

 

 

 

Height 

 

 In a tree data structure, the number of edges from the leaf node to the 
particular node in the longest path is known as the height of that node. 

 In the tree, the height of the root node is called "Height of Tree". 

 The tree height of all leaf nodes is 0. 



 

 

 

 
 

 

 

 

 

 

 

Depth 

 

 In a tree, many edges from the root node to the particular node are called 
the depth of the tree. 

 In the tree, the total number of edges from the root node to the leaf node 
in the longest path is known as "Depth of Tree". 

 In the tree data structures, the depth of the root node is 0. 



 

 

 
 

 
 

 
 

 

 

 

 

Path 

 
 

 In the tree in data structures, the sequence of nodes and edges from one 

node to another node is called the path between those two nodes. 

 The length of a path is the total number of nodes in a path.zx 



 

 

 

 
 

 
 

 

 

 

 

 

 

Subtree 

 

In the tree in data structures, each child from a node shapes a sub- tree recursively and every 

child in the tree will form a sub-tree on its parent node. 



 

 

 

 

 
 

 
 
 

 

 

  



 

Tree Traversal 

 
Traversal of the tree in data structures is a process of visiting each node and prints their value. 

There are three ways to traverse tree data structure. 

 
 Pre-order Traversal 

 In-Order Traversal 

 Post-order Traversal 

 

In-Order Traversal 

 
In the in-order traversal, the left subtree is visited first, then the root, and later the right subtree. 

 
Algorithm: 

 
Step 1- Recursively traverse the left subtree Step 2- Visit 

root node 

Step 3- Recursively traverse right subtree 



 

 

 
 

 

 

 

 

Pre-Order Traversal 

 
In pre-order traversal, it visits the root node first, then the left subtree, and lastly right subtree. 

 
Algorithm: 

 
Step 1- Visit root node 

 
Step 2- Recursively traverse the left subtree Step 3- 

Recursively traverse right subtree 



 

 

 
 

 

 

 
 

Post-Order Traversal 

 
It visits the left subtree first in post-order traversal, then the right subtree, and finally the root 

node. 

 
Algorithm: 

 
Step 1- Recursively traverse the left subtree Step 2- Visit 

root node 

Step 3- Recursively traverse right subtree 
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31 
 

Graph Coloring 
 

Graph coloring refers to the problem of coloring vertices of a graph in such a way that no two 
adjacent vertices have the same color. This is also called the vertex coloring problem. If coloring is 
done using at most m colors, it is called m-coloring. 

 
Graph Coloring 

Chromatic Number: 

The minimum number of colors needed to color a graph is called its chromatic number. For example, 
the following can be colored a minimum of 2 colors. 
 
Algorithm of Graph Coloring using Backtracking: 

Assign colors one by one to different vertices, starting from vertex 0. Before assigning a color, check if 
the adjacent vertices have the same color or not. If there is any color assignment that does not violate the 
conditions, mark the color assignment as part of the solution. If no assignment of color is possible then 
backtrack and return false. 
 

Method to Color a Graph 

The steps required to color a graph G with n number of vertices are as follows − 

Step 1 − Arrange the vertices of the graph in some order. 

Step 2 − Choose the first vertex and color it with the first color. 

Step 3 − Choose the next vertex and color it with the lowest numbered color that has not been colored on 

any vertices adjacent to it. If all the adjacent vertices are colored with this color, assign a new color to it. 

Repeat this step until all the vertices are colored. 

Example 

https://www.geeksforgeeks.org/introduction-to-backtracking-data-structure-and-algorithm-tutorials/


32 
 

 

In the above figure, at first vertex a is colored red. As the adjacent vertices of vertex a are again adjacent, 

vertex b and vertex d are colored with different color, green and blue respectively. Then vertex c is colored 

as red as no adjacent vertex of c is colored red. Hence, we could color the graph by 3 colors. Hence, the 

chromatic number of the graph is 3. 

 

Applications of Graph Coloring 

Some applications of graph coloring include − 

 Register Allocation 
 Map Coloring 
 Bipartite Graph Checking 
 Mobile Radio Frequency Assignment 
 Making time table, etc. 

  

https://en.wikipedia.org/wiki/Register_allocation
https://www.zib.de/groetschel/teaching/SS2012/GraphCol%20and%20FrequAssignment.pdf
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Bipartite Graph 
 

A Bipartite Graph is a graph whose vertices can be divided into two independent sets, U and V such that 
every edge (u, v) either connects a vertex from U to V or a vertex from V to U. In other words, for every 
edge (u, v), either u belongs to U and v to V, or u belongs to V and v to U. We can also say that there is 
no edge that connects vertices of same set. 

 

A bipartite graph is possible if the graph coloring is possible using two colors such that vertices in a set 
are colored with the same color. Note that it is possible to color a cycle graph with even cycle using two 
colors. For example, see the following graph.  

 

It is not possible to color a cycle graph with odd cycle using two colors.  

https://www.geeksforgeeks.org/bipartite-graph/
https://www.geeksforgeeks.org/bipartite-graph/


34 
 

 

Algorithm to check if a graph is Bipartite:  
One approach is to check whether the graph is 2-colorable or not using backtracking algorithm m coloring 
problem.  
Following is a simple algorithm to find out whether a given graph is Bipartite or not using Breadth First 
Search (BFS).  
1. Assign RED color to the source vertex (putting into set U).  
2. Color all the neighbors with BLUE color (putting into set V).  
3. Color all neighbor’s neighbor with RED color (putting into set U).  
4. This way, assign color to all vertices such that it satisfies all the constraints of m way coloring problem 
where m = 2.  
5. While assigning colors, if we find a neighbor which is colored with same color as current vertex, then 
the graph cannot be colored with 2 vertices (or graph is not Bipartite)  
 

https://www.geeksforgeeks.org/backttracking-set-5-m-coloring-problem/
https://www.geeksforgeeks.org/backttracking-set-5-m-coloring-problem/
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